
FINITE GROUPS WITH PLANAR SUBGROUP LATTICES

JOSEPH P. BOHANON AND LES REID

Abstract. It is natural to ask when a group has a planar Hasse lattice or

more generally when its subgroup graph is planar. In this paper, we completely

answer this question for finite groups. We analyze abelian groups, p-groups,

solvable groups, and nonsolvable groups in turn. We find seven infinite families

(four depending on two parameters, one on three, two on four), and three

“sporadic” groups. In particular, we show that no nonabelian group whose

order has three distinct prime factors can be planar.

1. Introduction

Dummit and Foote remark that “unlike virtually all groups” A4 has a planar

Hasse Lattice [6, p.110]. That is to say, the lattice of subgroups of a given group

can rarely be drawn without its edges crossing. Intrigued, the first author began

an investigation that led to a Master’s thesis written under the supervision of the

second author. Recently, others have also considered this problem [11, 14]. This

paper is a revised version of the first author’s thesis in which we will completely

classify those finite groups having planar lattices.

Before beginning, we need some definitions.

Definition 1.1. The subgroup graph of a group is the graph whose vertices are the

subgroups of the group and two vertices, H1 and H2, are connected by an edge if

and only if H1 ≤ H2 and there is no subgroup K such that H1 � K � H2.

Definition 1.2. We say that a group is planar if its subgroup graph is planar. We

say that a group is lattice-planar if its subgroup graph can be drawn in the plane

so that all the edges are straight lines, those lines only intersect at vertices, and if

H1 ≤ H2, then the y-coordinate of H1 is less than that of H2. (Starr and Turner

call this concept “upward planar”.)

Note that lattice-planar implies planar.

Example 1.3. Figure 1 shows that Zpqr is planar, but not lattice-planar.
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Figure 1. Zpqr is Planar but not Lattice-Planar

To show that a group is planar or lattice-planar, we will explicitly exhibit an

embedding of its subgroup graph in the plane. To show that a group is not planar,

we will use three techniques. Kuratowski’s Theorem states that a graph is nonplanar

if and only if it contains a subgraph homeomorphic to K5 or K3,3 [9, p.103], so if

we explicitly exhibit such a subgraph we will have shown nonplanarity. If G has

a subgroup that is nonplanar, clearly G must be nonplanar. If we can find an

H E G such that G/H is nonplanar, then G must be nonplanar since it contains a

sublattice isomorphic to that of G/H.

Example 1.4. Figure 2 shows that S4 and A5 are nonplanar. We use SX (resp.

AX) to denote the symmetric group (resp. the alternating group) acting on the set

X. Note that here and in the future we will only include those edges that are part

of the subgraph homeomorphic to K3,3.

S4 A5

S{1,2,4}

hhhhhhhhhhhhhh
S{1,3,4}

ppppp
S{1,2,3} S{2,3,4}

NNNNN
A{1,2,3,5}

ffffffffffffffff
A{1,2,4,5}

nnnnnn
A{1,2,3,4} A{1,3,4,5}

PPPPPP

〈(12)〉

MMMM qqqq
〈(13)〉

MMMM
〈(23)〉

MMMM
〈(123)〉

PPPPP nnnnn
〈(124)〉

PPPPP
〈(134)〉

PPPPP

1

NNNNNN
pppppp

1

QQQQQQQ
mmmmmmm

Figure 2. K3,3’s in the Lattices of S4 and A5

To show that a group is not lattice-planar we will invoke the following theorem

of Platt [8].

Theorem 1.5. A finite lattice is lattice-planar if and only if the graph obtained by

adding an edge from the minimal element to the maximal element is planar.

Starr and Turner [11] and Bohanon [2] prove the following result for abelian

groups.
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Theorem 1.6. Up to isomorphism, the only planar abelian groups are the trivial

group, Zpα , Zpαqβ , Zpαqr, and Zpα × Zp, where p, q, and r denote distinct primes.

The only one of these families that is not lattice-planar is Zpαqr.

The main result of our paper is the following theorem.

Theorem 1.7. Up to isomorphism, the only finite planar groups are the trivial

group and

1. Zpα , Zpαqβ , Zpαqr, Zpα × Zp

2. Q8 = 〈a, b|a4 = 1, b2 = a2, bab−1 = a−1〉
3. Q16 = 〈a, b|a8 = 1, b2 = a4, bab−1 = a−1〉
4. QD16 = 〈a, b|a8 = b2 = 1, bab−1 = a3〉
5. Mpα = 〈a, b|apα−1

= bp = 1, bab−1 = apα−2+1〉
6. Zq o Zpα = 〈a, b|aq = bpα

= 1, bab−1 = ai, ordq(i) = p〉, when p | q − 1

7. (Zp × Zp) o Zq = 〈a, b, c|ap = bp = cq = 1, ab = ba, cac−1 = aibj , cbc−1 =

akb`,where
(

i j
k `

)
is an element of order q in GL2(p)〉, when q | p + 1,

where p, q, and r are distinct primes. The only ones of these that are not lattice-

planar are Zpαqr and QD16.

Our approach will be to first investigate solvable groups. In this case, we will

find that we only need consider those groups of order pα, pαqβ , or pαqβrγ , which we

investigate in turn. We then consider nonsolvable groups. Using the classification

of minimal simple groups we show that there are no nonsolvable planar groups.

2. Solvable Groups

Recall that a Hall subgroup is a subgroup whose index is relatively prime to its

order and that a Sylow basis for a group is a set of Sylow subgroups {Pi}i∈π(G)

(where π(G) denotes the set of primes dividing |G|) of G such that PiPj ≤ G for

all i, j ∈ π(G).

We have the following theorem.

Theorem 2.1. Every solvable group has a Sylow basis {Pi}. For any I ⊆ π(G),∏

i∈I

Pi is a Hall subgroup of G. Moreover, any two Sylow bases are conjugate.

Proof. [10, p.229]. ¤

Proposition 2.2. There are no solvable planar groups whose orders have more

than three distinct prime factors.
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Proof. There is a Sylow basis containing four Sylow subgroups P, Q,R, and S. The

sublattice whoses vertices are {1}, P , Q, R, S, PQ, PR, PS, QR, QS, RS, PQR,

PQS, PRS, QRS, and PQRS is homeomorphic to the lattice of Zpqrs, which is

nonplanar by Theorem 1.6. ¤

2.1. p-Groups. In this section, we will classify the planar and lattice-planar non-

abelian groups of order pα, where p is a prime.

Definition 2.3. Let α denote an integer, α ≥ 3. The quaternionic group of order

2α is Q2α = 〈a, b|a2α−1
= b4 = 1, a2α−2

= b2, bab−1 = a−1〉. The quasi-dihedral

group of order 2α is QD2α = 〈a, b|a2α−1
= b2 = 1, bab−1 = a2α−2−1〉. The modular

group of order pα, p a prime, is Mpα = 〈a, b|apα−1
= bp = 1, bab−1 = apα−2+1〉.

Lemma 2.4. The modular group Mpα is lattice-planar.

Proof. If pα = 8, then M8
∼= D8 is lattice-planar by Figure 3 (its subgroup graph

is qualitatively different from those of the other modular groups).

M8

〈a2, b〉
uuuu
〈a〉 〈a2, ab〉

KKKK

〈b〉
xxxx
〈a2b〉 〈a2〉

HHHH tttt
〈ab〉 〈a3b〉

KKKK

{1}
ttttt

iiiiiiiiiiii

IIII
SSSSSSSSSSS

Figure 3. Lattice of M8

It is straightforward to show that Figure 4 gives the subgroup lattice for Mpα ,

pα 6= 8. (Note that this lattice is isomorphic to that of Zpα−1 × Zp.) ¤

Mpα

〈a〉
rrrrr

〈ab〉
¢¢¢
· · · 〈abp−1〉

DDD

〈ap, b〉

RRRRRRRR

〈ap〉

mmmmmmmm

KKKKKK
;;; ||||

〈apb〉
yyyy
· · · 〈apbp−1〉

GGGG

〈ap2
, b〉

SSSSSSSSS

〈ap2〉

kkkkkkkkkk

QQQQQQQQQ
DDDD xxxx

· · · 〈apα−2
, b〉

〈apα−2〉

jjjjjjjjj
〈apα−2

b〉

tttt
· · · 〈apα−2

bp−1〉

MMMM

〈b〉

TTTTTTTTTTTT

{1}

iiiiiiiiiiiiii

TTTTTTTTTTT
KKKK

ppppp

Figure 4. Lattice of Mpα
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It is well known that every p-group G contains a central normal subgroup H of

order p. Since every quotient of a planar group must be planar, it is natural to ask

which nonabelian planar p-groups G have G/H isomorphic to the planar p-groups

Zpα−1 × Zp or Mpα . Note that Zpα cannot occur as such a quotient since G/H

being cyclic would force G to be abelian. The following two lemmas are the key to

our classification of nonabelian planar and lattice-planar p-groups.

Lemma 2.5. If G is nonabelian, |G| = pα, α ≥ 3, H is a central subgroup of order

p, and G/H ∼= Zpα−2 × Zp, then G is planar if and only if G ∼= Mpα or Q8. These

groups are all lattice-planar.

Proof. If α = 3 and p = 2, the only nonabelian groups are (up to isomorphism) the

(lattice-planar) modular group and Q8 which is lattice-planar by Figure 5.

Q8

〈a〉
yyy
〈b〉 〈ab〉

GGGG

〈a2〉

DDD xxx

{1}

Figure 5. Lattice of Q8

If α = 3 and p is odd, there are (up to isomorphism) two nonabelian groups

of order p3. They are the (lattice-planar) modular group and (Zp × Zp) o Zp =

〈a, b, c|ap = bp = cp = 1, ba = ab, ca = ac, cbc−1 = ab〉 [3, p.145]. Figure 6 shows

that the second group is not planar.

G

〈a, b〉

jjjjjjjjjjj 〈a, c〉
vvvv

〈a, bc〉

IIII

〈b〉 〈c〉 〈bc〉 〈a〉

HHHH
YYYYYYYYYYYYYYYYYYYYYYYY

WWWWWWWWWWWWWWWWW

{1}
vvvv

GGGG
SSSSSSSSSSS

Figure 6. K3,3 in the Lattice of (Zp × Zp)o Zp

Let H = 〈c〉 with cp = 1. By our assumption on G/H, we may choose a, b ∈ G

such that apα−2
= ci, bp = cj and bab−1 = ack, with i, j, k ∈ {0, 1, . . . , p− 1}.

If i 6= 0, then a has order pα−1. According to Burnside, the only nonabelian

group of order pα, p odd, with a cyclic subgroup of order pα−1 is Mpα [3, pp.134-

135]. The only nonabelian groups of order 2α that have a cyclic subgroup of order
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2α−1 are D2α , QD2α , M2α and Q2α [3, p.135]. But if G ∼= D2α , QD2α or Q2α , G

contains a unique central subgroup H of order p and in each case G/H ∼= D2α−1 ,

which contradicts the fact that G/H is abelian.

Now suppose i = 0. Note that in all cases ap is central, since c is central and

bapb−1 = (bab−1)p = (ack)p = apckp = ap. Table 1 gives a list of cases and the

corresponding subgroup or subgraph that proves nonplanarity. Note that when

j 6= 0 and k = 0, G is abelian, so we need not consider this case.

case nonplanar subgroup or subgraph

j = 0 〈ap, b, c〉 ∼= Zpα−3 × Zp × Zp

j 6= 0, k 6= 0, α > 4 〈ap, b〉 ∼= Zpα−3 × Zp2

j 6= 0, k 6= 0, α = 4 Figure 7
Table 1

The case j 6= 0, k 6= 0, α = 4 requires a bit of explanation. Taking ` ≡ j−1 mod p

and m ≡ (k`)−1 mod p, and letting x = b` and y = a−m, we have c = xp and our

group is A = 〈x, y|xp2
= yp2

= 1, yxy−1 = xp+1〉. Figure 7 shows a K3,3 in the

subgroup lattice of this group. The lattices for the case p = 2 and p an odd prime

are slightly different since (xy)2 = y2 in the first case, but (xy)p = xpyp in the

second case.

A A

〈x2, y〉
oooo
〈x, y2〉 〈x2, xy〉

OOOO

〈xp, y〉
oooo
〈x, yp〉 〈xp, xy〉

OOOO

〈y〉
ttt
〈x2, y2〉

pp
hhhhhhhhh 〈x〉 〈xy〉 〈y〉

ttt
〈xp, yp〉

ppp
hhhhhhhhh 〈x〉 〈xy〉

〈y2〉
JJJ

hhhhhhhhhhhh 〈x2〉 〈yp〉
JJJ

〈xp〉 〈xpyp〉

{1}
NNNN

{1}
pppp

NNNN

p = 2 p odd

Figure 7. K3,3 in the Lattice of Group A

¤

Lemma 2.6. If G is nonabelian, |G| = pα, α ≥ 4, H is a central subgroup of order

p, and G/H ∼= Mpα−1 , then G is planar if and only if G ∼= Q16 or QD16. Q16 is

lattice-planar, but QD16 is not.

Proof. Analogously to the previous lemma, we have H = 〈c〉 with cp = 1 and

a, b ∈ G such that apα−2
= ci, bp = cj and bab−1 = apα−3+1ck, with i, j, k ∈
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{0, 1, . . . , p− 1}. If i 6= 0, as in the previous lemma the only possibilities for G are

Mpα , D2α , Q2α , or QD2α . Since Mpα/H is abelian, this case cannot occur. For

the remaining three types, G/H ∼= D2α−1 which is not isomorphic to M2α−1 unless

α = 4.

We have D16 = 〈a, b|a8 = b2 = 1, bab−1 = a7〉 and Figure 8 gives a sublattice

homeomorphic to K3,3. Figure 9 shows that Q16 is lattice planar. An exercise in

Dummit and Foote [6, p.72] produces a lattice for QD16 that is planar if we re-

position the edge from 〈a4〉 to 〈a4, a2b〉 as shown in Figure 10. To show that QD16

is not lattice-planar we will invoke Platt’s Theorem. We add an additional edge

from {1} to QD16 and exhibit a subgraph homeomorphic to K3,3 in Figure 11.

D16

〈a2, b〉
uuuu

〈a2, ab〉

LLLL

〈a4, b〉 〈a3b, a4〉 〈a5b, a4〉

NNNN

〈b〉 〈a4〉

HHHH ssss
hhhhhhhhhhhhh 〈a3b〉 〈a5b〉

{1}

IIIII ssss

hhhhhhhhhhhhhh

Figure 8. K3,3 in the Lattice of D16

Q16

〈a2, b〉
uuuu
〈a〉 〈a2, ab〉

JJJJ

〈a2b〉
uuuu
〈b〉 〈a2〉

HHHH tttt
〈ab〉 〈a3b〉

KKKK

〈a4〉
tttt

iiiiiiiiiiii

HHHH
TTTTTTTTTTT

{1}

Figure 9. Lattice of Q16

Now suppose that i = 0. Note that regardless of the values of i, j and k, ap is

central. Table 2 gives a description of the nonplanar subgroup or subgraph in each

case.

If j 6= 0, k = 0 and α = 4, G is clearly isomorphic to Group A of Lemma 2.6. If

j 6= 0, k 6= 0, α = 4, and p is odd, then taking ` ≡ j−1 mod p, m ≡ (k`)−1 mod p,

x = a`bk`2 , and y = a−m shows (with a bit of calculation) that G is isomorphic to
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QD16

〈a2, b〉
ssss
〈a〉 〈a2, ab〉

LLLL

〈a4, a2b〉
rrrr
〈a4b〉 〈a2〉

JJJJ ssss
〈a3b〉 〈a5b〉

KKKK

〈a6b〉

jjjjjjjjjj 〈a2b〉
rrrr
〈a4b〉

rrrrr
〈b〉 〈a4〉

JJJJ ssss

iiiiiiiiiiiii

{1}

JJJJJ
UUUUUUUUUUUUU

YYYYYYYYYYYYYYYYYYYYYY

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Figure 10. Re-Arranged Lattice of QD16

QD16

〈a2, b〉
nnnnnn

〈a2, ab〉

QQQQQQ

〈a4, a2b〉

mmmmmm
〈a4b〉

〈a4〉

PPPPPPP

XXXXXXXXXXXXXXXXX

|||||||||||

{1}

AAAAAAAAAAA

QQQQQQQQQQQQQQQQQQQ

Figure 11. K3,3 Showing QD16 is not Lattice-Planar

case nonplanar subgroup or subgraph

j = 0 〈ap, b, c〉 ∼= Zpα−3 × Zp × Zp

j 6= 0, α > 4 〈ap, b〉 ∼= Zpα−3 × Zp2

j 6= 0, k = 0, α = 4 Figure 7

j 6= 0, k 6= 0, α = 4, p = 2 〈a2, b2, ab〉 ∼= Z2 × Z2 × Z2

j 6= 0, k 6= 0, α = 4, p odd Figure 7
Table 2

Group A. The fact that (asbt)p+1 = a(p+1)sb(p+1)t is key to this calculation, but

this only holds for p odd. ¤

Theorem 2.7. Up to isomorphism, the only nonabelian planar p-groups are are

Mpα , Q8, Q16, and QD16. The only one of these that is not lattice-planar is QD16.

Proof. Let |G| = pα and let H be a central subgroup of order p, generated by c.

We will induct on α. As noted earlier G/H must be planar and cannot be cyclic

(since G is nonabelian).
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If α = 3, this means that G/H ∼= Zp × Zp, hence G ∼= M8 or Q8 by Lemma

2.5. If α = 4, then G/H ∼= Zp2 × Zp,Mp3 , or Q8. In the first two cases, Lemma

2.5 and Lemma 2.6 force G ∼= Mp4 , Q16, or QD16. We claim there is no planar

group G such that G/H ∼= Q8. There are a, b ∈ G such that a4 = ci, b2 = a2cj ,

and bab−1 = a−1ck, with i, j, k = 0 or 1. If i = 1, then by [3, pp.134-135] the only

candidates for G are M16, D16, Q16, or QD16, but as we saw in the proof of Lemma

2.5, H is uniquely determined in each case and G/H is abelian when G ∼= M16 and

dihedral in the other cases. If i = j = k = 0, then G/〈a2〉 ∼= Z2 × Z2 × Z2, which

is nonplanar. If i = 0 and at least one of j or k is nonzero, then G ∼= Z4 o Z4 =

〈x, y|x4 = y4 = 1, yxy−1 = x−1〉 (Table 3 gives the appropriate choices for x and y

in each case). Figure 12 shows that this group is not planar.

case choices for x and y

j = 0, k = 1 x = ab, y = b

j = 1, k = 0 x = a, y = b

j = 1, k = 1 x = b, y = a

Table 3

G

〈a2, b〉

qqqqq
〈a, b2〉 〈a2, ab〉

MMMMM

〈b〉
vvvv
〈a2, b2〉

ssss
iiiiiiiiiii

〈a〉 〈ab〉

〈b2〉

HHHH
iiiiiiiiiiiiii 〈a2〉

LLLLLL

{1}
rrrrr

LLLLL

Figure 12. K3,3 in the Lattice of Z4 o Z4

If α = 5, then the only new candidates for planar groups would have G/H ∼= Q16

or QD16. Each of these has a subgroup isomorphic to Q8 (〈a2, b〉 in the first case

and 〈a2, ab〉 in the second), so G would contain a subgroup K such that K/H ∼= Q8,

but such a K must be nonplanar by our arguments when α = 4.

Finally, if α > 5, then G/H ∼= Zpα−2 × Zp or Mpα−1 by induction and G ∼=
Zpα−1 × Zp or Mpα by Lemmas 2.5 and 2.6.

¤
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2.2. Groups of Order pαqβ. We need some standard notation and a definition.

Notation 2.8. We will denote the order of an element x ∈ Zn by ordn(x). We will

let np(G) denote the number of Sylow p-subgroups in G; if there is no possibility

of ambiguity we will simply write np.

Definition 2.9. Given a group G and H1,H2,H3,K ≤ G, we say that K is

trivalent with respect to H1,H2 and H3 if in the subgroup graph of G there are

chains of edges from K to each of the Hi such that the chains only intersect at K.

Before we look at any specific examples, we state two lemmas and a proposition

regarding groups of order pαqβ .

Lemma 2.10. If G is a group and H1, H2,H3 ≤ G such that Hi 6≤ Hj for i 6= j,

there is a subgroup of H1 and a supergroup of H1 that are each trivalent with respect

to the Hi.

Proof. We will denote the subgroup we seek by D. If H1 ∩ H2 6⊆ H1 ∩ H3, let

D = H1 ∩H2 and our chains are D → H1, D → H2, D → H1 ∩H2 ∩H3 → H3. If

H1 ∩H2 ⊆ H1 ∩H3, let D = H1 ∩H3 and our chains are D → H1 ∩H2 ∩H3 → H1,

D → H2, and D → H3. Repeating the proof with 〈X, Y 〉 replacing X ∩ Y and

reversing the inclusions produces the supergroup. ¤

Proposition 2.11. Let G be a group of order pαqβ, α ≥ 2. If np > 1, G has

a normal subgroup K of index p, and the intersections of three of the Sylow p-

subgroups of G with K are distinct, then G is nonplanar.

Proof. Let our three Sylow p-subgroups be P1, P2 and P3. By Lemma 2.10 we can

find a subgroup of P1 ∩ K that is trivalent with respect to P1 ∩ K, P2 ∩ K, and

P3 ∩ K (since groups of this form have the same order and are distinct, by our

hypothesis, we cannot have any containment relationships). By Lemma 2.10, we

can find a supergroup of P1 that that is trivalent with respect to P1, P2 and P3

(and consequently with respect to P1 ∩K, P2 ∩K and P3 ∩K). Moreover P1 ∩K,

P2 ∩K and P3 ∩K also connect to K (or equivalently, to a subgroup of K). Note

that our common supergroup cannot be K because K has order pα−1qβ and Pi has

order pα. This provides a homeomorphic copy of K3,3 and completes the proof. ¤

We will begin our investigation with groups of order pαq, then p2q2, and finally

pαqβ with α, β ≥ 2.
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2.2.1. Groups of order pαq.

Lemma 2.12. The semi-direct product Zq ot Zpα = 〈a, b|aq = bpα

= 1, bab−1 =

ai, ordq(i) = pt〉, where pt | q − 1, is lattice-planar if t = 0 or 1 and nonplanar if

t > 1. Every semi-direct product ZqoZpα is of one of these types. Note that in the

future, when t = 1 we will suppress the subscript.

Proof. When t = 0, we have the direct product which is planar by Theorem 1.6. It

is straightforward to show that Figure 13 gives the subgroup lattice when t = 1.

Zq o Zpα

〈abp〉
ooooo

〈b〉 〈ab〉

OOOOOO
· · · 〈aq−1b〉

XXXXXXXXXXXXXXXXX

〈abp2〉 〈bp〉

MMMMMMM
kkkkkkkkkk

VVVVVVVVVVVVVVVV

〈abpα−1〉 ... 〈bp2〉

VVVVVVVVVVVVVVV

〈a〉 〈bpα−1〉

VVVVVVVVVVVVV

{1}

WWWWWWWWWWWWWWWWW

Figure 13. Lattice of Zq o Zpα

When t > 1, applying Proposition 2.11 with P1 = 〈b〉, P2 = 〈ab〉, P3 = 〈a2b〉, and

K = 〈a, bp〉E G shows that we have a nonplanar group in this case. ¤

Proposition 2.13. Up to isomorphism, the only nonabelian planar groups of order

p2q are the semi-direct product Zq oZp2 described in Lemma 2.12 (when p | q − 1)

and

(Zp × Zp)o Zq = 〈a, b, c|ap = bp = cq = 1, ab = ba, cac−1 = aibj , cbc−1 = akb`〉
where

(
i j
k `

)
is an element of order q in GL2(p) (when q | p + 1).

All of these groups are lattice-planar.

Proof. Burnside provides a classification of groups of order p2q [3, pp.76-80]. First

we deal with the case when p < q.

Case 1a, p - q − 1: Sylow’s Theorem shows that there are no nonabelian groups

in this case.

Case 1b, p | q − 1, but p2 - q − 1: In this case we have two nonabelian groups.

The first is Zq oZp2 which is lattice-planar by Lemma 2.12. We refer to this group

as Group 1 of order p2q.
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The second group in this case is 〈a, b, c|aq = bp = cp, bab−1 = ai, ca = ac, cb =

bc, ordq(i) = p〉. We refer to this group as Group 2 of order p2q. The conditions

of Proposition 2.11 are satisfied with P1 = 〈b, c〉, P2 = 〈ab, c〉, P3 = 〈a2b, c〉 and

K = 〈a, b〉E G, so it is nonplanar.

Case 1c, p2 | q − 1: We automatically get both groups from Case 1b. We also

get Zq o2 Zpα , which is nonplanar by Proposition 2.12. We refer to this group as

Group 3 of order p2q.

Now consider when p > q. We cannot apply Proposition 2.11, since there is a

unique Sylow p-subgroup in this case.

Case 2a, q - p2 − 1: In this case there are no nonabelian groups.

Case 2b, q | p− 1: First, we get 〈a, b|ap2
= bq = 1, bab−1 = ai, ordp2(i) = q〉. We

refer to this group as Group 4 of order p2q. This is nonplanar by Figure 14.

G

〈ap, b〉 〈ap, ab〉

MMMMM

〈ap, a2b〉

WWWWWWWWWWWWWW

〈ap〉
vvvv

iiiiiiiiiii

ffffffffffffffffffff 〈apb〉 〈ap+1b〉 〈ap+2b〉

{1}
ppppp

LLLLL

Figure 14. K3,3 in the Lattice of Group 4 of Order p2q

Next we have 〈a, b, c|ap = bp = cq = 1, cac−1 = ai, cbc−1 = bit

, ab = ba, ordp(i) =

q〉. There are (q + 3)/2 isomorphism types in this family (one for t = 0 and one

for each pair {x, x−1} in F×p ). We will refer to all of these groups as Group 5(t) of

order p2q. Figure 15 shows a subgraph homeomorphic to K3,3. When t 6= 0 or 1,

neither A nor B are present. When t = 0, A is absent and B = 〈ac〉. When t = 1,

A = 〈ab, c〉 and B is absent.

Case 2c, q | p + 1: The only nonabelian group here is 〈a, b, c|ap = bp = cq =

1, ba = ab, cac−1 = aibj , cbc−1 = akb`〉 where
(

i j
k `

)
has order q in GL2(p). We

refer to this group as Group 6 of order p2q. This group is lattice-planar by Figure

16Zpα o Zqβ ,.

It should be noted that when (p, q) = (2, 3), cases 1 and 2 are not mutually

exclusive. There are three nonabelian groups of order 12 up to isomorphism: T =

Z3 o Z4 (Group 1, lattice-planar), D12 (Group 2, nonplanar), and A4 (Group 6,

lattice-planar). ¤
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G

A

ssssss

〈abc〉
ttttt
〈a, c〉

§§§§§§§§
〈a, b〉 〈b, c〉

88888888

B 〈a〉
uuuu
〈c〉

uuuu
IIII

〈b〉

IIII
〈ab〉

SSSSSSSSSS

{1}

kkkkkkkkkkk

TTTTTTTTTTTT

Figure 15. K3,3 in the Lattices of Groups 5(t) of Order p2q

(Zp × Zp)o Zq

〈a, b〉
gggggggggggg

〈a〉

lllllllll 〈ab〉
wwww
· · · 〈abp−1〉

KKKK

〈b〉

WWWWWWWWWWWWWWWWW 〈c〉

@@@@@@@@@@

〈ac〉

KKKKKKKKKKKKKK
· · · 〈axbyc〉

TTTTTTTTTTTTTTTTTTTTTTT
· · ·

{1}
ssss

gggggggggggggggggg

GGGG
RRRRRRRRRR

dddddddddddddddddddddddddddd

ccccccccccccccccccccccccccccccccc

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Figure 16. Lattice of (Zp × Zp)o Zq

Proposition 2.14. The only planar groups of the form Zpα o Zqβ , α > 1, β > 0,

are the cyclic groups.

Proof. Let G be a planar group of the form Zpα o Zqβ . We have a presentation

for G of the form G = 〈a, b|apα

= bqβ

= 1, bab−1 = ai〉, where iq
β ≡ 1 mod pα.

We will induct on α + β beginning with α + β = 3, where the result follows by

Proposition 2.13. Suppose that α + β > 3. We must have α > 2 or β > 1. If

α > 2, then 〈ap, b〉 ∼= Zpα−1 o Zqβ with α − 1 > 1. By induction this subgroup

must be cyclic, so ap = bapb−1 = aip which implies that i ≡ 1 mod pα−1, i.e.

i = 1 + kpα−1. Now 〈a, bq〉 is also cyclic (by induction if β > 1, by inspection

if β = 1). Therefore a = bqab−q = aiq

, so iq ≡ 1 mod pα. But this yields (1 +

kpα−1)q ≡ 1 + qkpα−1 ≡ 1 mod pα which forces p | k and i ≡ 1 mod pα and our

original group is abelian. If β > 1, then 〈a, bqβ−1〉 is cyclic by induction (we need

β > 1 for this to be a proper subgroup). The subgroup H = 〈bqβ−1〉 is normal and

G/H ∼= 〈a, b|apα

= bqβ−1
= 1, bab−1 = ai〉. But this group must also be cyclic by

induction, hence i = 1 and therefore G is cyclic as well. ¤

Proposition 2.15. Up to isomorphism, the only planar groups of order pαq with

α ≥ 3 are Zpαq and Zq o Zpα and these are all lattice-planar.

Proof. Let P denote a Sylow p-subgroup and Q a Sylow q-subgroup.
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We will induct on α. Consider the case when α = 3. If p > q, then np = 1 by

Sylow’s Theorem and our group G ∼= P o Zq. Since P must be planar, we must

have P ∼= Zp3 ,Zp2 × Zp,Mp3 , or Q8. If P ∼= Zp3 , we are done by Proposition 2.15.

If P ∼= Zp2 × Zp or Mp3 , a and b are generators of P (a of order p2, b of order p),

and c is a generator for Zq, then we have cac−1 = aibj and hence capc−1 = api.

Both Zp2×Zp and Mp3 have the characteristic subgroup P ′ = 〈ap, b〉 ∼= Zp×Zp. In

order for P ′ oQ to be planar, it must be isomorphic to Group 6 of order p2q, but

in this case the matrix appearing in the definition of Group 6 has the form
(

i 0
k `

)
.

This matrix has eigenvalues in the field Fp and hence cannot have order dividing

p+1 as required. Our last subcase is P ∼= Q8. It is well known that Aut(Q8) ∼= S4.

If q > 3, q - 24 and our semi-direct product must be the direct product Q8 × Zq

which has the nonplanar group Z2 × Z2 × Zq as a quotient. If q = 3, the only

non-trivial semidirect product up to isomorphism is Q8 o Z3 = 〈a, b, c|a4 = b4 =

c3 = 1, a2 = b2, bab−1 = a−1, cac−1 = b, cbc−1 = ab〉 [3, p.159]. The figure below

shows that this group is nonplanar.

Q8 o Z3

〈ac〉
qqqqq
〈bc〉 〈abc〉

MMMM

〈a2〉
vvvv

iiiiiiiiiiiii

fffffffffffffffffffff 〈abc2〉 〈ac2〉 〈bc2〉

{1}
rrrrr

MMMMM

Figure 17. K3,3 in the Lattice of Q8 o Z3

Consider the case when p < q and (p, q) 6= (2, 3). We cannot have nq = p. If

nq = p2, then q | (p + 1)(p− 1) which implies that q | p + 1 or q | p− 1, but this is

impossible since q > p > 2. If nq = p3, then there are p3(q − 1) elements of order

q. But this only leaves p3q − p3(q − 1) = p3 elements and our Sylow p-subgroup

must be normal, a case we have already considered. Therefore, the only remaining

possibility is that we have a semi-direct product isomorphic to Zq o P , where

P ∼= Zp3 ,Zp2 × Zp, Mp3 , or Q8. If P ∼= Zp3 the only nonabelian planar possibility

is the one claimed (by Lemma 2.12). If P ∼= Zp2 ×Zp or Mp3 , each has a subgroup

isomorphic to Zp × Zp which is nonplanar by Proposition 2.13. If P ∼= Q8 and the

semi-direct product is a direct product, np = 1 and we have already dealt with this

case. According to [13, p. 257], up to isomorphism the only non-trivial semi-direct

product is 〈a, b, c|aq = b4 = c4 = 1, b2 = c2, bcb−1 = c−1, ba = ab, cac−1 = a−1〉. In

this case b2 is central and G/〈b2〉 is the nonplanar Group 2 of order p2q.
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Finally, when (p, q) = (2, 3) Burnside [3, p.160] states that the only group of

order 24 that is not a semi-direct product is S4 which is nonplanar by Example 1.4.

This completes the case when α = 3.

When α > 3 and np = 1 our group is isomorphic to P o Zq with P planar.

If P ∼= Zpα , we are done by Proposition 2.14. If P ∼= Zpα−1 × Zp or Mpα , P ′ =

Zpα−2 × Zp is characteristic in P and P ′ oZq is nonplanar by induction. We must

also deal with the case when p = 2 and α = 4 separately, since P ∼= Q16 or QD16

are also possible. But in both cases, 〈a4〉 is characteristic and modding out by it

gives Q8 o Zq or D8 o Zq which yields no planar groups.

When α > 3 and np(G) 6= 1, we know that there must be a normal subgroup

K E G of index p, since all groups of order pαqβ are solvable [3, p.323]. If np(K) 6=
1 we have at least three distinct Sylow p-subgroups of K, which must each lie

in distinct Sylow p-subgroups P1, P2, P3 of G. Applying Proposition 2.11, G is

nonplanar. If np(K) = 1, then K = P ′ o Zq, which must be cyclic by induction.

Since the intersection of any Sylow q-subgroup of G with K is a Sylow q-subgroup of

K [6, p.147, ex. 34] and all of these q-subgroups have order q, this forces nq(G) = 1.

Therefore G ∼= ZqoP . If P ∼= Zpα , we are done by Lemma 2.12. If P ∼= Zpα−1×Zp

or Mpα , then Zp×Zp ≤ P and we are done by Proposition 2.13. It remains to deal

with the case p = 2 and α = 4, when P ∼= Q16 or QD16 are possibilities. The fact

that Z2×Z2 ≤ QD16 and Q8 ≤ Q16 reduces these to previously studied nonplanar

cases. ¤

2.2.2. Groups of Order p2q2.

Proposition 2.16. The only planar groups of order p2q2 are the cyclic groups.

Proof. As usual, P and Q will denote a Sylow p-subgroup and q-subgroups respec-

tively. We may assume without loss of generality that p > q. By Sylow’s Theorem,

np = 1, q, or q2. We cannot have np = q since p > q. If np = q2, then

p | (q+1)(q−1) which implies that p | q+1. This is impossible unless (p, q) = (3, 2),

a case we will address shortly. Except possibly for this case, we therefore have

G ∼= P oQ. If G ∼= Zp2 o Zq2 , we are done by Proposition 2.14.

If G ∼= Zp2 o (Zq × Zq), the subgroups Zp2 o (Zq × {0}) and Zp2 o ({0} × Zq)

must be cyclic, but this forces G ∼= Zp2 × (Zq×Zq) which is nonplanar by Theorem

1.6.

If G ∼= (Zp × Zp) o Zq2 , then G ∼= 〈a, b, c|ap = bp = cq2
= 1, ab = ba, cac−1 =

aibj , cbc−1 = akb`〉, where M =
(

i j
k `

)
has order dividing q2 in GL2(p). The

subgroup 〈a, b, cq〉 must be planar and hence must be isomorphic to Group 6 of

order p2q. The matrix associated to that group is Mq which must have order q,
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hence M has order q2. Any element of the form aibjck has order q2 when q - k.

This gives us the following nonplanar sublattice.

G

〈a, b, cq〉 〈ac〉

qqqqqq
〈bc〉 〈abc〉

NNNNNN

〈(ac)q〉

NNNN
〈(bc)q〉

VVVVVVVVVVV
〈(abc)q〉

YYYYYYYYYYYYYYYYYYYY

{1}
qqqqq

LLLLL

Figure 18. K3,3 in a Group of Order p2q2

If G ∼= (Zp×Zp)o (Zq ×Zq), it contains the nonplanar group (Zp×Zp)×Zq as

a subgroup, regardless of the automorphism used to define the semidirect product

[7].

Finally, we must deal with the case when (p, q) = (3, 2) and np 6= 1. A standard

argument, e.g. [7, p.176], shows that in that case there is a surjective homomor-

phism from G to A4. Let H be the inverse image of Z2×Z2 ≤ A4. Now H is planar,

it has order 12 and a normal subgroup K of order 3 such that H/K ∼= Z2 × Z2.

The only planar groups of order 12 are Z12, A4, and T = Z3 o Z4. But A4 has

no normal subgroups of order 3 and the quotient of A4 or T by its unique normal

subgroup of order 3 is Z4, not Z2 × Z2. ¤

2.2.3. Groups Of Order pαqβ, α, β ≥ 2.

Proposition 2.17. The only planar groups of order pαqβ, α, β ≥ 2, are the cyclic

groups.

Proof. Let G denote our group of order pαqβ . We will induct on α + β beginning

with α+β = 4, where the result holds by Proposition 2.16. Now suppose α+β > 4.

Since G is solvable, it must contain a normal subgroup H of prime index, without

loss of generality, say q. As usual, P will denote a Sylow p-subgroup and Q a Sylow

q-subgroup.

If β > 2, then H must be cyclic by induction. Since the intersection of a Sylow

p-subgroup of G with H yields a Sylow p-subgroup of H, the Sylow p-subgroups of

G and of H have order pα, and np(H) = 1, we must have np(G) = 1. Therefore

G ∼= P o Q with P cyclic. There is a characteristic subgroup P ′ ≤ P of index p

and K = P ′ oQ ≤ P oQ, so K is planar. If α > 2, K is cyclic by induction and

if α = 2, K is cyclic or isomorphic to Zp oZqβ by Proposition 2.15. In either case,

Q must be cyclic, and hence G ∼= P oQ must be cyclic by Proposition 2.14.
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If β = 2, then H is cyclic, and we may proceed as above, or H ∼= Zq o Zpα by

Proposition 2.14. In this case, Zq is characteristic in H, hence normal in G. We

have two subcases to consider. If nq(G) 6= 1, let L = G/Zq. We have |L| = pαq and

nq(L) 6= 1 since Zq lies in all of the Sylow q-subgroups of G, but no planar groups

of this order have nq 6= 1. If nq(G) = 1, then G = Q o P . If Q is cyclic, we use

the arguments in the previous paragraph. If Q is not cyclic, we use the fact that P

contains a subgroup P ′ of order p2 and invoke Proposition 2.16 to show that QoP ′

is not planar. ¤

2.3. Groups of order pαqβrγ.

Proposition 2.18. The only solvable planar groups of order pαqβrγ are the cyclic

ones (those in which two of the exponents are 1).

Proof. Let G be our group. If np = nq = nr = 1, G is the direct product of its

Sylow subgroups. Since P ×Q, P ×R and Q×R must be planar, by our work on

groups of order pαqβ , the Sylow subgroups must be cyclic. Therefore, G is cyclic.

We know this group is only planar when two of the exponents are 1 by Theorem

1.6.

Without loss of generality, suppose np 6= 1. Let P , Q and R form a Sylow basis

for G, and let P ′ be a Sylow subgroup distinct from P . Since P and P ′ are distinct

and PQ∩PR = P , we cannot have P ′ ≤ PQ∩PR. This implies that there cannot

be exactly one Hall subgroup of order pαqβ and exactly one of order pαrγ . Assume

that PQ 6= P ′Q′ are Hall subgroups of order pαqβ . The edges from P to PQ and

from P ′ to P ′Q′ may or may not cross. If they do not, Figure 19 shows a K3,3 in

the subgroup graph. Note that 〈PQ, P ′Q′〉 might be G and P ∩P ′ might be trivial,

but this does not affect the nonplanarity.

G

〈PQ, P ′Q′〉

pppppp

P ′Q′

ppppp
PQ PR QR

P ′ P

ppppppp
Q

NNNNNNN
yyyy

R

EEEE

P ∩ P ′

PPPPPP

{1}

NNNNN

Figure 19. K3,3 for One Case in Proposition 2.18
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If the edges do cross, we repeat the the construction above with the roles of Q

and R reversed. This is only a problem if the edges from P to PR and from P ′ to

P ′R′ also cross. But in that case, P ′ ≤ PQ ∩ PR, which we’ve seen is impossible.

¤

This completes the classification of planar finite solvable groups.

3. Nonsolvable Groups

Recall that a minimal simple group is a nonabelian simple group all of whose

proper subgroups are solvable.

Since any nonsolvable group has a simple group as a subquotient and every

simple group has a minimal simple group as a subquotient, if we can show that

the minimal simple groups are nonplanar, we will have shown that the nonsolvable

groups are nonplanar. The classification of minimal simple groups, which preceded

the full classification of simple groups historically, will be given below.

Definition 3.1. Recall that SLm(n) is the group of m×m matrices having deter-

minant 1 whose entries lie in a field with n elements and that Lm(n) = SLm(n)/H

where H = {kI|km = 1}.
Theorem 3.2. A finite group is a minimal simple group if and only if it is iso-

morphic to one of the following:

1. L2(2p) (p any prime)

2. L2(3p) (p an odd prime)

3. L3(3)

4. L2(p) where p2 ≡ −1 mod 5 and p > 3,

5. Sz(2q) with q ≥ 3 and odd.

Proof. [12, p.388]. All we need to know about Sz(2q), known as Suzuki groups,

will be quoted below. ¤

Lemma 3.3. The dihedral groups D4n are nonplanar for n > 2.

Proof. If p is a prime that divides n, 〈a2n/p, b〉 ∼= D4p. This was shown to be

nonplanar in Proposition 2.16 where it was Group 4 of order 4p . ¤

Theorem 3.4. There are no nonsolvable planar groups.

Proof. As noted above, it will suffice to show that the minimal simple groups are

nonplanar. We will denote the image of a matrix A in Lm(n) by A.

L2(qp) : We take care of the first two families on our list. For p = 2, the only

candidate is qp = 4. Note first that L2(4) ∼= A5 [1] which is nonplanar by Example

1.4.
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For p > 2, we have that L2(qp) contains a nonplanar subgroup isomorphic to

(Zq)p, namely the subgroup of matrices of the form
(

1 a
0 1

)
with a ∈ Fqp .

L3(3) : In SL3(3) the only matrix in the subgroup H is the identity matrix, so

L3(3) ∼= SL3(3). Consider the subgroup consisting of matrices of the form
( 1 a b

0 1 c
0 0 1

)

with a, b, c ∈ F3. This subgroup is isomorphic to the group (Zp × Zp) o Zp with

p = 3 which is nonplanar by Lemma 2.5 (Figure y).

L2(p) : Note that here H = {±I}. We must deal with two cases.

Case 1: p ≡ 1 mod 4: We will show that L2(p) contains a subgroup isomorphic

to Dp−1. Let x ∈ Zp be a primitive root and y ∈ Zp an element such that y2 ≡
−1 mod p (which exists since p ≡ 1 mod 4). Let a ≡ 2−1(x + x−1) mod p and

b ≡ (2y)−1(x− x−1) mod p, R =
(

a b
−b a

)
, and S =

( y 0
0 −y

)
. It is straightforward to

verify that R,S ∈ SL2(p) and that 〈R, S〉 = 〈r, s|r(p−1)/2 = s2 = 1, srs−1 = r−1〉 ∼=
Dp−1, which is nonplanar by Lemma 3.3 when p > 5. When p = 5, L2(5) ∼= A5 [1]

which is nonplanar by Example 1.4.

Case 2: p ≡ 3 mod 4: We will show that L2(p) contains a subgroup isomorphic

to Dp+1. Since p ≡ 3 mod 4, x2 + 1 is irreducible over Fp and we can identify

the field Fp2 with Fp[x]/(x2 + 1). The multiplicative group of this field is cyclic of

order p2 − 1, so there must be an element, y = a + bx, of order p + 1 in this group.

Let R =
(

a b
−b a

)
. There are elements s, t ∈ Fp such that s2 + t2 ≡ −1 mod p [4,

p.1]. Let S =
(

s t
t −s

)
. It may be verified that R, S ∈ SL2(p) and that 〈R, S〉 =

〈r, s|r(p+1)/2 = s2 = 1, srs−1 = r−1〉 ∼= Dp+1, which is nonplanar when p > 7. For

p = 7, S4 is a maximal subgroup of L2(7) [1] so it is nonplanar by Exampple 1.4.

Sz(2q) : The Suzuki group, Sz(2q), contains a subgroup isomorphic to (Z2)q [5,

p.466]. Since q ≥ 3 this subgroup is a nonplanar by Theorem 1.6.

¤

4. Conclusion

Putting the results of the previous sections together we obtain our main theorem.

In [11], Starr and Turner also classify the infinite abelian planar and lattice-

planar groups. We know of no examples of infinite nonabelian planar groups. The

question of their existence or non-existence and the study of other graph-theoretical

properties of the subgroup graph will be the subject of future work.
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